American Resources Policy Network
Promoting the development of American mineral resources.
  • Silver Linings: Materials Science Revolution Marches On Amid Pandemic

    The coronavirus pandemic may have torn through communities, brought public life to a halt, thrown markets into turmoil, and laid bare the extent of our complex and deep critical mineral resource dependencies. It has not  — thankfully, considering the materials challenges we’re up against — stopped the ongoing materials science revolution.

    As policy makers and industry stakeholders look to address our mineral resource supply chain vulnerabilities during and beyond the pandemic, researchers are forging ahead to provide innovative solutions that not only transform the way we use certain metals and minerals, but have the potential help alleviate our over-reliance issues. 

    We have outlined several promising research breakthroughs and projects as part of our Materials Science Profiles of Progress series here

    In the same vein, the Department of Energy has stepped up its efforts to promote collaboration between its research hubs and the private sector to look for ways to diversify mineral resource supply, develop substitutes and drive recycling of critical minerals and rare earth elements. 

    In a recent piece for Real Clear Energy, U.S. Secretary of Energy Dan Brouilette outlines some of the initiatives spearheaded by DoE and its research hubs, ranging from “identifying and extracting critical minerals and REEs from previously untapped sources such as our vast coal reserves,” over capturing lithium from waste product generated by geothermal power production to developing “high-performance magnets used in renewable energy technologies and advanced motors with reduced REE content.”

    With regards to critical materials and REE recycling, Brouilette cites two promising developments:

    “The first involves using a high-speed shredder that turns old computer hard drives into scrap containing significant amounts of REE content. Our scientists apply an acid-free recycling process to the scrap that recovers REEs with greater than 99-percent purity, reducing the steps involved in the previous process and lowering recycling costs.

    The second involves recovering nickel, cobalt, and manganese from disassembled electric vehicle battery packs. A recent American Manganese Inc. project, on which DOE partnered, generated recycled products with purities greater than 98-percent of the 3 critical minerals.”

    In a time when keeping up with the headlines is anxiety-inducing for many, it is nice to see that some positive developments are on the horizon.  They may seem wonky, but their importance should not be underestimated, because, as Brouilette concludes in his Real Clear Energy piece: 

    “Our over-reliance on countries like China that are not reliable trading partners for critical supply chains threatens our economic and national security. We must reclaim our independence over critical mineral and rare earth element supplies to secure a prosperous future.”

  • Materials Science Profiles of Progress: REE Extraction and Separation From Phosphoric Acid

    The tech war between China and the United States over who will dominate the 21st Century Technology Age is heating up.

    Earlier this week, China’s rare earth producers, who control the vast majority of global REE output, put out a statement declaring they are ready to “use their dominance of the industry as a weapon in the country’s year-long trade war with their customers in the United States.” 

    Against the backdrop of these news, the recent announcement by a Florida startup regarding their successful extraction and separation of rare earth elements out of phosphoric acid becomes all the more meaningful and deserve a feature in our Materials Science Profiles of Progress series.

    As part of this series, we highlight public-private partnerships that are fueling the materials science revolution which is transforming the ways in which we use and obtain metals and minerals and their work to develop practical solutions to critical minerals issues. 

    Using a reusable nano-filtration system called Thor, Precision Periodic, a company based at the University of Central Florida’s Business Incubator Program, successfully extracted and separated REEs out of both phosphoric acid and the resulting waste.

    Earlier in July, as part of a flurry of activity on the part of the U.S. government to spur domestic critical mineral — and especially REE — development, the Trump Administration in July took its own actions to respond to Chinese REE saber rattling and invoked the 69-year old Defense Production Act to spur domestic REE development.

    We can expect to see more of these public-private partnerships take off as the 21st Century Tech Wars evolve.  The stakes are high, and resource supply dynamics are subject to enormous volatility, as the latest developments in the Cobalt realm show.

    Hopefully our policy makers and other stakeholders will continue to press ahead with meaningful resource policy reforms. 

  • Materials Science Profiles of Progress: DoE’s New Research Center on Lithium Battery Recycling to Leverage Resources of Private Sector, Universities and National Laboratories

    Speaking at the Bipartisan Policy Center’s American Energy Innovation Council last week, Energy Secretary Rick Perry announced the launch of a new research center on lithium battery recycling. The Battery Recycling R&D Center will focus on reclaiming and recycling “critical materials (e.g. cobalt and lithium) from lithium based battery technology used in consumer electronics, defense, energy [...]
  • “Consumption” Missing Element in Discussion over Mineral Resource Development

    You need “stuff” to make “stuff.”  It’s a simple concept, but one that is all too often forgotten. As ARPN’s Dan McGroarty wrote in a 2015 Forbes op-ed coauthored with then-CEO of mining advisory firm Behre Dolbear Karr McCurdy: “[A]s a precursor to sound policy, the nation needs a change in mind-set: It’s time to [...]
  • Video: CMI Founding Director Reflects on Five Years of Critical Materials Research

    Video clips are a great way to ease back into the work week after a holiday.  And thankfully, the Critical Materials Institute, a Department of Energy research hub under the auspices of Ames Laboratory, has got you covered. As we recently shared, CMI Founding Director Dr. Alex King has stepped down from the post he [...]
  • Passing the Torch – Change in Leadership at Critical Materials Institute (CMI)

    There’s a lot going on in the realm of critical minerals these days – and that does not only apply to policy, but also personnel changes. After five years of building and leading the Critical Materials Institute (CMI), a Department of Energy research hub under the auspices of Ames Laboratory, its Director Dr. Alex King [...]
  • Materials Science Profiles of Progress: CMI Announces New Partnership to Recover REEs from E-Waste

    A new year, a new installment of our Materials Science Profiles of Progress series: The Critical Materials Institute (CMI), a U.S. Department of Energy Innovation Hub under the auspices of Ames Laboratory has announced a new collaboration entered into by one of its industry associates to recover Rare Earth Elements (REEs) from electronic waste.  Momentum [...]
  • 2017 – a Year of Mixed Signals: No Grand Strategy – But Some Signs We May Be Digging Out of Our Resource Dependency

    Amidst the chaos of Christmas shopping, holiday parties and travel arrangements, the end of the year is customarily the time to take stock of the last twelve months and assess where to go from here. Here is our recap of 2017: On the heels of a year that very much presented itself as a mixed [...]
  • “Materials Science Profiles of Progress” – REE Extraction From Coal

    In the fairy tale realm, Rumpelstilskin was able to turn straw into gold. Meanwhile, in the real world, as part of our feature series “Materials Science Profiles of Progress,” we’re taking a closer look at a recently-announced research partnership that may not be able to turn straw into gold, but promises to extract precious Rare [...]
  • Materials Science Profiles of Progress – Researchers Turn to Bioengineered Bacteria to Recover REEs

    Followers of ARPN are well aware that we have been calling out policy makers and other stakeholders for their inaction when it comes to working towards the development of a coherent, forward-looking and comprehensive mineral resource strategy – and we frequently point to missed opportunities to work towards this goal. While we stand by our [...]